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Abstract

A new direct method of obtaining reductions of the Toda equation is
described. We find a canonical and complete class of all possible reductions
under certain assumptions. The resulting equations are ordinary differential-
difference equations, sometimes referred to as delay-differential equations. The
representative equation of this class is hypothesized to be a new version of one
of the classical Painlevé equations. The Lax pair associated with this equation
is obtained, also by reduction.

PACS numbers: 02.30.Ik, 02.03.Ks
Mathematics Subject Classification: 37K10, 34K17

1. Introduction

Many papers have been written on the Toda equation{
ut = u(v − v)

vt = 2(u2 − u2),
(1.1)

where u = un(t) = u(n, t), v = vn(t) = v(n, t), ut = ∂u(n, t)/∂t, u = u(n + 1, t), u =
u(n − 1, t), v = v(n + 1, t), v = v(n − 1, t). The familiar exponential form of the Toda
equation

d2Qn

dt2
= exp{−(Qn − Qn−1)} − exp{−(Qn+1 − Qn)} (1.2)

can be obtained through the change of variables

un = 1

2
exp{−(Qn − Qn−1)/2} (1.3)

vn = −1

2

dQn−1

dt
. (1.4)
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In either case, the solutions depend on the two independent variables (n, t). Equations that
involve iterates in one independent variable and derivatives in another are referred to as
differential-difference equations. Below, we also use this term for equations in which iterates
and derivatives in the same variable appear.

The Toda equation is also an example of a ‘lattice model’. Such lattice models appear
in many physical settings, ranging from the study of thermalization in metals to the study of
cellular neural networks and optical lattices. For these applications, it is essential to understand
the wide variety of solutions possible. Reductions provide one method of extending our
knowledge of the space of known solutions.

We focus on reductions to equations involving only one independent variable

Hη = K(H,H,H), H : R �→ R, (1.5)

where Hη = dH/dη,H = H(η, t),H = H(η, t). Examples of such reductions of the Toda
equation were obtained through Lie symmetry analysis by Levi and Winternitz [4].

1.1. Background

Symmetry reductions of differential-difference equations have been studied by many authors.
A comprehensive review can be found in [4]. Early results on symmetry reductions kept n
fixed while allowing u and t to be deformed by a method based on the classical approach
to differential equations that was developed by Sophus Lie. An interesting variation on this
standard approach was considered in [5] by allowing n to deform continuously in addition
to u and t. The resulting equations arising as reductions are ordinary differential-difference
equations of the form (1.5).

In [5], Quispel et al found an equation of the form (1.5) as a reduction of the Kac-
van Moerbeke or Volterra equation. They showed that their reduced equation becomes the
classical first Painlevé equation [3] in a continuum limit. This equation was described as a
‘delay-differential’2 version of a Painlevé equation by Grammaticos et al [2]. Other such
equations were proposed by Grammaticos et al [2] as delay Painlevé equations by using the
criterion of the singularity confinement method. In [4], other ordinary differential-difference
equations were found as reductions of the Toda equation. We show that these are contained
in our results. Moreover, we show that our results are complete under the assumptions given
below.

1.2. Direct method

In 1989, Clarkson and Kruskal [1] used a ‘direct approach’ to find reductions of the Boussinesq
equation and found new reductions which were not captured by the classical Lie symmetry
approach. This direct approach was later shown to be related to ‘non-classical’ symmetries.
We develop a direct approach to finding reductions of differential-difference equations.

The most general form for a reduction is

u(n, t) = U(n, t,H(η),G(η)), v(n, t) = V (n, t,H(η),G(η)), η = η(n, t), (1.6)

where H and G form a coupled system of equations of the form (1.5). For equations (1.1), it
turns out to be sufficient to take the ansatz

u(n, t) = a(n, t) + b(n, t)H(η) (1.7a)

2 We note that this reduced equation contains both retarded H(η − 1) and advanced terms H(η + 1), whilst the usual
terminology limits the usage of the term ‘delay’ to equations containing only retarded terms such as H(η − 1).
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v(n, t) = c(n, t) + d(n, t)G(η), (1.7b)

where η = η(n, t). Central to our argument are the following rules (stated for a, b and H for
conciseness, but they apply also to c, d and G).

Rule 1. If a(n, t) = a0(n, t) + b(n, t)�(η), then we can take � ≡ 0 w.l.o.g. by substituting
H(η) �→ H(η) − �(η).

Rule 2. If b(n, t) has the form b(n, t) = b0(n, t)�(η), then we can take � ≡ 1 w.l.o.g. by
substituting H(η) �→ H(η)/�(η).

Rule 3. If η(n, t) is determined by an equation of the form �(η) = η0(n, t), where � is
invertible, then we can take �(η) = η w.l.o.g. by substituting η �→ �−1(η).

Definition 1.1. Given non-zero, differentiable and invertible functions, �(η), we refer to
the transformations H(η) �→ H(η) − �(η),H(η) �→ H(η)/�(η) and η �→ �−1(η) as the
reduction transformations on (1.7).

Our main result is given in proposition 2.1 below.

1.3. Outline of results

In this paper, we obtain direct reductions of equations (1.1). The details of our direct method
are given in section 2. In section 3, we show that the ansätze (1.7) in fact represent the
general case and can be assumed without loss of generality. A continuum limit of the resulting
differential-difference equations is given in section 4. In section 5, we find the corresponding
reduction of the Lax pair for the Toda equation. Finally, a conclusion rounds off the paper.

2. Direct reduction of the Toda equation

Proposition 2.1. Suppose that the ansätze (1.7) hold. Then the only possible nonlinear
second-order reduction of equation (1.1) of the form (1.5) that is unique up to reduction
transformations of H,G and η is given by

−c0H + Hη = H(G − G) (2.1a)

p0 − c0G + Gη = 2(H 2 − H 2), (2.1b)

where the reduction is given by η(n, t) = ν(n) + σ(t), ν(n) being an arbitrary function with

σ(t) =
⎧⎨
⎩

1

c0
log(c0t + c1) + c2 if c0 �= 0

a0t + a1 otherwise,
(2.2)

where cj , j = 0, . . . , 2, a0, a1 are constants and the reductions of u, v are given by the
following two respective cases:

(1) Case c0 �= 0:

u(n, t) = ± 1

c0t + c1
H(η) (2.3a)

v(n, t) = −p0

c0

1

(c0t + c1)
+ c3 +

1

c0t + c1
G(η) (2.3b)
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(2) Case c0 = 0:

u(n, t) = ±a0H(η) (2.4a)

v(n, t) = p0a
2
0 t + p1 + a0G(η) (2.4b)

with p0, p1 being constants.

Proof. Under the ansätze (1.7), the Toda equation becomes

at + btH + bηtHη = (a + bH)(c − c + d G − dG) (2.5a)

ct + dtG + dηtGη = 2(a2 − a2 + 2abH − 2a b H + b2H 2 − b2 H 2). (2.5b)

In the following we indicate generic functions of η (which are assumed to be differentiable,
non-zero and invertible) by the notation �j (η).

Since we seek nonlinear reduced equations of the form (1.5), we require the terms HG

and HG to be present in the reduced equation (2.5a). Therefore, we require that

bηt�1(η) = bd (2.6a)

d�2(η) = d. (2.6b)

Consider equation (2.6a), which implies d = ηt�1(η). However, by Rule 2, this implies
�1(η) ≡ 1 and, therefore, d = ηt w.l.o.g.

Using this in equation (2.6b), we obtain ηt = ηt�2(η). However, by taking a change of
variables

η = �(ξ(n, t)), where �ξ = �ξ�2(�(ξ)),

we can take ηt = ηt w.l.o.g. This implies that ηt = σ ′(t), for some differentiable function
σ(t), and therefore, η(n, t) = ν(n) + σ(t), where ν(n) is an arbitrary function.

Now consider the second equation (2.5b). Requiring that the terms H 2 and Gη both
remain in the reduced equation, we find that we must have

b2 = dηt�3(η) ⇒ b2 = (σ ′(t))2 w.l.o.g.,

where we have used Rule 2 once again. Therefore, we have b = ±σ ′(t).
Now consider the linear terms in equation (2.5a). In particular, if we require that terms

linear in G remain in the reduced equation, we must have

ad = bηt�4(η) ⇒ a = ±σ ′(t)�4(η) = b�4(η) ⇒ a ≡ 0 w.l.o.g.

by an application of Rule 1.
If, on the other hand, the linear term in H on the left side of the equation remains in the

reduced equation, then

bt = bd�5(η) ⇒ σ ′′ = (σ ′)2�5(η).

However, since σ only depends on t, while η also depends on n, this can only hold if �5 is
identically constant. Letting this constant be −c0, we find σ ′′(t) = −c0(σ

′(t))2. We integrate
this ODE for σ(t) to find

σ(t) =
⎧⎨
⎩

1

c0
log(c0t + c1) + c2 if c0 �= 0

a0t + a1 if c0 = 0
,

where cj , j = 0, 1, 2 and a0, a1 are arbitrary constants.
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Finally, if the linear term in H on the right side of equation (2.5a) remains, then

b(c − c) = bηt (�6 − �6)

where we have taken the liberty of writing the arbitrary function of η on the right as the
difference of another such function. This leads to

c − c = σ ′(�6 − �6) ⇒ c = σ ′�6(η) + γ (t),

where γ (t) is an arbitrary function of t. However, since σ ′ = d, we now have
c = d�6(η) + γ (t). By Rule 2, we can take �6 ≡ 0 and, therefore, c = γ (t) w.l.o.g.

Reduced equations (2.5a) and (2.5b) are now

−c0H + Hη = H(G − G)

γ ′(t)
(σ ′(t))2

− c0G + Gη = 2(H 2 − H 2).

Since this equation can only contain coefficients that are functions of η, we must have
γ ′ = p0(σ

′)2, where p0 is a constant. That is,

γ =
⎧⎨
⎩

−p0

c0

1

(c0t + c1)
+ c3, if c0 �= 0

p0a
2
0 t + p1 if c0 = 0,

where c3 and p1 are constants. �

Remark 2.1. Our reduced equations (2.1) form a system of differential-difference equations,
which evolves on a sequence of domains containing points

P = {η0, η0, η0, . . .},
where if η0 = ν(n) + σ(t), then η0 = ν(n + 1) + σ(t). In the interior of any domain in n,
where the mapping ν(n) �→ ν(n + 1) is defined, we get a semi-infinite chain of points P and
a corresponding sequence of domains on which these iterates are defined. Since ν(n) is an
arbitrary function, we have an infinite-dimensional family of reductions.

Remark 2.2. We note that two cases of nonlinear reductions were found by Levi and Winternitz
[4]. In these cases, the new independent variable, called y in their paper, is given respectively
by (A) y = t exp(−αn) or (B) y = t − αn, where α is a constant. Case (A) after taking log y

as a new variable is the subcase c0 = 1, c1 = 0, c2 = 0 of the above result. Case (B) is the
subcase c0 = 0, a0 = 1, a1 = 0 of the above result. In both cases, ν(n) = −αn.

3. Generalization of ansätze

Here we show how the ansätze (1.7) represent the general case. Consider the general reduction

u(n, t) = c(n, t,H(η(n, t)),G(η(n, t))) (3.1a)

v(n, t) = d(n, t,H(η(n, t)),G(η(n, t))). (3.1b)

Under these transformations, the Toda equation becomes

ct + cH Hηηt + cGGηηt = c(d − d) (3.2a)

dt + dH Hηηt + dGGηηt = 2(c2 − c2). (3.2b)
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For the reduced equation to each contains the nonlinear terms in H,G, we require

d = d�1(η,H,G) (3.3a)

c2 = c2�2(η,H,G). (3.3b)

Rewriting �1 and �2 in these equations appropriately, we can sum each to get

c = e(t)�3(η,H,G), d = f (t)�4(η,H,G).

Therefore,

cH ηt = e(t)�4(η,H,G)ηt = e(t)�3(η,H,G)f (t)�4(η,H,G)

⇒ cH = g(n, t)�5(η,H,G)

⇒ c = h(n, t)�6(η,H,G) + k(n, t).

Similarly, we find

d = r(n, t)�7(η,H,G) + s(n, t).

By defining �6 and �7 to be new variables, if necessary, we reproduce the ansätze assumed
earlier as (1.7).

4. Continuum limits

To find continuum limits, it is useful to first convert the system of equations (2.1) into a single
scalar equation.

Lemma 4.1. Define r(η) = 2 log(2H(η)). Then r(η) satisfies

rηη = c0(rη − 2c0) + (exp(r) − 2 exp(r) + exp(r)). (4.1)

Proof. The proof is by the direct calculation.

r(η) = 2 log(2H) ⇒ rη = 2
Hη

H
= 2(c0 + G − G)

⇒ rηη = 2c0(G − G) + 4(H
2 − H 2) − 2(H 2 − H 2),

which gives the desired result upon using H 2 = exp(r)/4. �

Assume for simplicity that η = ν0 + η. Then a continuum limit of equation (4.1) is obtained
by assuming

r = ε2w(z), z = εη, ν2
0 = 1, c0 = ε4K

as ε → 0. Then w(z) satisfies

wzz + 6w2 + αz + β = 0, (4.2)

where α and β are integration constants. Note that this equation is a scaled and translated
version of the classical first Painlevé equation.
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5. Lax pair

We apply the reduction found in section 2 to the Lax pair for the Toda equation given by
Wadati and Toda [7]:

uψ + uψ + vψ = λψ (5.1a)

ψt = uψ − uψ. (5.1b)

Using the results of proposition 1 for the case c0 �= 0, we find from equation (5.1a)

±σ ′Hψ + ±σ ′H ψ +

{(
−p0

c0
σ ′ + c3

)
+ σ ′G

}
ψ = λψ. (5.2)

In order for this to be a reduced equation containing coefficients that are only functions
of η, we require c3 = 0 and need to choose a definite sign in b = ±σ ′, say the positive
sign. Furthermore, we define a new spectral variable ζ = λ/σ ′. Then we obtain for
φ(η, ζ ) = ψ(n, t),

ψt = ζtφζ + σ ′φη = σ ′(c0ζφζ + φη).

Hence we get the reduced Lax pair

Hφ + H φ +

(
G − p0

c0

)
φ = ζφ (5.3a)

c0ζφζ + φη = Hφ − H φ. (5.3b)

We note that the character of the Lax pair has changed from a spectral problem to a monodromy
problem, since now derivatives in ζ also appear in the linear problem. By differentiating
equation (5.3a) in two different ways, once with respect to ζ and once with respect to η, and
using (5.3b) to replace φζ , while using (5.3a) to replace φ, we can show that the compatibility
conditions for the linear system (5.3) are precisely equations (2.1).

Remark 5.1. We note that the classical first Painlevé equation has no explicit solutions
expressible in terms of previously known functions. There is no reason to believe
that equations (2.1) should possess any such explicit solutions. However, the reduced
equations (2.1) do have the solution H ≡ 0,G ≡ 0, if p0 = 0. The corresponding solution
of the Lax pair (5.3) is φ ≡ 0. These results underlie the solvability of the reduced equation
and the reduced Lax pair. Local existence of solutions to respective initial value problems can
be inferred from the standard existence theorems for differential-difference equations.

6. Concluding remarks

We have developed a new direct method of obtaining reductions of differential-difference
equations and applied this method to the Toda equation (1.1). The completeness of our results
in the class of ‘reduction transformations’ (see definition 1) is shown in two steps. First, in
section 2, we found the most general possible reduction subject to the ansätze (1.7). Second, in
section 3, we showed that the ansätze assumed in fact represent the general case. A continuum
limit of the reduced equations is found to be related to the first Painlevé equation in section 4.
Finally, in section 5, we showed that the reduced equations inherit a linear problem from the
Toda equation.

The reductions we have found through the direct method appear to be closely related
to those obtained by the Lie-symmetry approach [4]. However, we note that in the latter
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approach, the iterations of the independent variable η are assumed to be the simple ones
described by η = η + α, or η = αη, where α is a constant. No such assumption is made in
our approach. The reduced equations (2.1) allow a more general functional iteration of η to
appear. We also note that neither a continuum limit of these reductions or their linear problem
has been found before.

The inheritance of a linear problem through the reduction indicates that equations (2.1)
are integrable. These results suggest that the system (2.1) is analogous to the well-known
reductions of completely integrable partial differential equations, namely the classical Painlevé
equations. However, questions remain open on how close such an analogy might be.

The solutions of the Painlevé equations have a characteristic complex analytic structure
in the complex plane of their independent variables. Formal Laurent expansions of the
solutions of the Toda equation and one of its reductions have been discussed in [6]. However,
while equations (2.1) form a first-degree, second-order system of differential equations in η,
they form a second-degree, second-order system when considered as a system of difference
equations. This introduces a multi-valuedness into the system when it is solved for the highest
iterate of H, which makes any proof of meromorphicity of the solutions slightly delicate.
Moreover, the simultaneous presence of iterates of φ and derivatives of φ in η makes the linear
system (5.3) a type of monodromy problem that has not been studied before.
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